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ABSTRACT 

 
Corneal confocal microscopy (CCM) is a new technique offering non-invasive and fast imaging useful for 

diagnosing and analyzing corneal diseases. The morphology of corneal nerve fibres can be clearly observed from CCM 

images. Segmentation and quantification of nerve fibres is important for analyzing corneal diseases such as diabetic 

peripheral neuropathy (DPN). In this paper, we propose an automated deep learning based method for corneal nerve fibre 

segmentation in CCM images. The main contributions of this paper are: (1)We add multi-scale split and concatenate 

(MSC) blocks to the decoding part of the four layer U-Net architecture. (2) A new loss function is applied that combining 

the Dice loss with the fibre length difference between the ground truth and the prediction. The method was tested on a 

dataset containing 90 CCM images from 4 normal eyes and 4 eyes with corneal diseases. The Dice coefficient of our 

approach can reach 87.96%, improves 1.6% compared with the baseline, and outperforms  some existing deep networks 

for segmentation. 
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1.  INTRODUCTION 

There is a growing interest on the segmentation and analysis of corneal nerve images. These images, obtained in 

vivo, in conscious patients, through corneal confocal microscopy(CCM)
1
, can document corneal nerve changes. Corneal 

injury and corneal diseases are often associated with changes in corneal nerve fibres. The quantification of nerve fibers 

offers information useful for analysis of many clinical cases, such as postoperative regeneration and repair of corneal 

injury, the effect of long-term contact lenses wearing, and different degrees of diabetic peripheral neuropathy (DPN) 
2,3

.  

In the past, the analysis of corneal nerve parameters was usually based on a manual laborious task that is subjective 

and prone to errors
4-7

. At present, fully automatic methods of nerve fibre segmentation, requiring no specific expertise 

from the user, have been proposed. Ferreira et al. used adaptive histogram equalization to enhance image contrast, 

adopted wavelet transform filtering algorithm based on phase symmetry, and used a set of artificially selected seed points 

for neural reconstruction
8
. Scarpa et al. identified a set of seed points as the starting point of neural tracking, and used 

fuzzy c-means clustering to divide pixels into neural pixels and background pixels
9
. Dabbah et al. proposed an automatic 

neural analysis and classification system for corneal images under confocal microscopy based on multi-scale dual-model 

detection algorithm. In the classification stage, pixels are divided into neural or non-neural pixels based on random forest 

(RF) and neural network (NN)
10

. 

However，for some reasons, traditional methods cannot segment nerve fibres well. For example, corneal cells 

beside the nerve fibres  may be a disturbance.  Then for corneas with diseases, the abnormal areas in CCM images may 

reduce the segmentation accuracy. The segmentation of fine nerve fibres is also a big challenge. Therefore, in this paper, 

to deal with these problems, we consider applying a deep learning method with improved network architecture and loss 

function to obtain better segmentation performance. 
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2. METHODS  

2.1 Structure of the proposed deep network 

 
U-Net was originally proposed to segment cells

11
, and was proved to get quite good performance in lots of medical 

image segmentation tasks. We modify it to segment nerve fibres in corneal confocal microscopy images. Fig.1(a) shows 

the whole network and Fig.1(b) show the proposed multi-scale split and concatenate (MSC) block. As can be seen from 

Fig.1(a),we first reduce the original five-layer U-Net to a four-layer U-Net where the number of parameters is greatly 

reduced and the segmentation performance remains the same. Then in the decoding phase, we add the multi-scale MSC 

block after each up-sampling operation. The MSC block introduces various sizes of receptive fields in each network 

layer. Therefore the network can extract more feature information. 

 

 
(a)     

                                                                               

 
(b) 

Fig.1. An overview of the improved U-net. (a) the network architecture. (b) the MSC block 

 

2.2  The MSC block 

 
The MSC block is inspired by the Res2Net model proposed for computer vision tasks

12
, and is shown in Fig.1(b). 

After the  1×1 convolution, the feature maps are evenly split into 4 subsets of channels, denoted by I1 to I4. Except for I4, 

each Ii goes through a corresponding 9×9 convolution, denoted by Ki (). We denote by Oi as the output of Ki(). The 

feature subset Ii is added with the output of Ki+1 (), and then fed into Ki ().Thus, Oi can be written as:  

 

                                                      = 
                                     

                                      
                                                             (1) 

So the groups of feature maps go through 9×9 convolutions and concatenations in a hierarchical way. Finally, multi-scale 

feature maps O1 to O4 are obtained. To better fuse information at different scales, the four groups of feature maps are 
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concatenated and pass through a 1×1 convolution to get the output. Due to the combinatorial explosion effects, the output 

of the MSC block contains features with receptive fields of different sizes. As nerve fibres are linear structures with 

different width, the split and concatenation strategy can help to extract both thick and thin fibres. On the whole, the MSC 

block can help the U-Net to extract both global and local information, and thus enhances the ability of feature extraction. 

                                               

2.3  Loss function 

 
First, the Dice loss function

13
 is applied to make the network more focused on the foreground, which occupies a 

small proportion of the image. However, with the Dice loss, thicker fibres contribute more, and the network can be 

biased toward accurate segmentation of thicker fibres and tends to ignore thinner and shorter ones. Therefore we 

consider incorporating the length difference into the loss function, so that the bias caused by thickness can be reduced.   

We generate a binary segmentation map by applying a hard threshold 0.5 to the network output. Thinning operation 

is then applied to both the ground truth denoted as x and the segmentation map denoted as y. The total number of fibre 

pixels in the skeleton map are calculated and denoted as the total fibre length lx and ly. The mismatch ratio between them 

is defined as:  

                                                               

                                                                       
       

  
                                                                     (2) 

Then the proposed loss function is defined as:                       

                                                                                                                                                      (3) 

where                                                                                                                                                                       (4) 

When the prediction map loses more nerve fibres, the index mr will be bigger. Then Loss will be bigger and the network 

will adjust the parameters towards reducing the mr.  Therefore this loss function can guide the model to pay more 

attention to the difference of nerve fibre length in the optimization process, and further solve the problem of class 

imbalance, which helps the detection of fine fibres.    

                                                                           
3. RESULTS 

 

3.1 Datasets 

 
The dataset used in this paper includes 90 two-dimensional nerve fibre images obtained by a corneal confocal 

microscope with image size of 384×384, corresponding to 400μm×400μm. For these 90 images, 50 images were 

obtained from 4 normal eyes and the other 40 images were from 4 eyes with corneal diseases.  

 

3.2 Implementation Details 

 
Data augmentation including horizontal or vertical flipping, affine transformation and additive Gaussian noise was 

applied. In the training process, the stochastic gradient descent (SGD) algorithm with an initial learning rate of 0.01 and 

a momentum of 0.9 was used to optimize the network. The batchsize was 2, and the number of epochs was 80.  

The training was done in an end-to-end way with the 90 nerve fibre images and corresponding ground truth 

segmentation maps. Four-fold cross validation was used in our experiments. In each fold, the training set and testing set 

are divided patient-wise. 

We compare segmentation results of the proposed method (Baseline+MSC+αLDice) with those obtained by the 

original U-Net[2], the baseline (four-layer U-net architecture), and  the state-of-the-art segmentation networks SegNet
14

 

and ERFNet
15

. We also compared with model variations where MSC block was used with only the Dice loss 

(Baseline+MSC), and where the new loss was applied but the MSC block was left out (Baseline+αLDice). 

 

3.3 Metrics 

 
The following five metrics: accuracy (Acc)

16
, the Dice similarity coefficient (DSC), the area under the ROC 

curve(AUC), sensitivity(Se), and specificity (Sp) are calculated to quantitatively evaluate the performance of our method. 
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Some are defined  as: 

       
     

                 
  ,      

    

               
  , 

                                         
  

     
    ,                   

  

     
  ,                                                                    (5) 

where TP denotes the true positive, FP denotes the false positive, FN denotes the false negative, TN denotes the true 

negative. The receiving operator characteristics (ROC) curve is computed with the true positive ratio (Se) versus the false 

positive ratio (1 − Sp) with respect to a varying threshold, and the area under the ROC curve (AUC) is calculated for 

quality evaluation. 

3.4 Results 

Fig.2.shows the performance trend comparison(Acc and DSC) on the test set between baseline (four-layer U-net 

architecture) and our method(Baseline+MSC+αLDice) during the training process, it can be seen that for both methods, as 

the epoch increases, the performance improves and then tends to be stable. In addition, our method performs better than 

the baseline regarding both metrics. This trend in the training process proves the reliability of our method. 

 

 

Fig.2. Validating Acc and DSC of baseline and our method. 

 

Table I shows the comparison of metric results on the normal, abnormal and total dataset. We can see that, 

compared with the baseline, the two proposed modifications can each obtain better performance, on both normal and 

abnormal data. The MSC block helps the network improve 0.6% on DSC, and the new loss function helps improve 1.2% 

on DSC. The combination of them obtains the best performance, with improvement of 1.62%. For the normal dataset, the 

proposed method achieves 0.8967, 0.9748 and 0.9347 for DSC, Acc and AUC respectively. For the abnormal dataset, the 

proposed method achieves 0.8581, 0.9834 and 0.9238 for DSC, Acc and AUC respectively. In terms of total dataset, our 

method achieves 0.8796, 0.9786 and 0.9299 for DSC, Acc and AUC respectively. Our approach also outperforms the 

original U-Net, ERFNet and SegNet.  

Testing results of three representative CCM images are displayed in Fig.3. Fig.3.(a) shows the original nerve fibre 

images, where the first two images are from the normal dataset and the third is from the abnormal dataset. From fig.3.(b) 

to Fig.3.(f), it respectively shows the probability map generated by the baseline, our method, SegNet, U-Net and 

ERFNet . It can be seen that, compared with the baseline and other methods, our method can identify more thin and low-

contrast nerve fibres on both normal and abnormal data. 

4. CONCLUSIONS 

In this paper, we propose a deep learning network for segmentation of corneal nerve fibres from CCM images, 

where the structure of U-net is improved by adding the MSC blocks, and the loss function is improved by combining the 

Dice loss and the fibre length difference. The MSC block introduces receptive fields of various sizes and helps extract 

more feature information. The loss function can guide the model to pay more attention to the difference of nerve fibre 

length and further solve the problem of class imbalance, which helps the detection of fine fibres. Experimental results 
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demonstrated the effectiveness of our method. The proposed method performs well for both normal and abnormal data. It 

provides more accurate information for the quantitative analysis of corneal nerve fibres. 

 

 

(a)                         (b)                         (c)                        (d)                         (e)                        (f) 

Fig.3. Experimental results in CCM images. (a) The original nerve fibre images (the first two images are from the normal 

dataset and the third is from the abnormal dataset). (b) The probability map generated by the baseline.(c) The probability 

map  generated by our method. (d) The probability map generated by SegNet.(e) The probability map  generated by U-

Net. (f) The probability map  generated by ERFNet. 

 

Table I  Comparison results on the normal, abnormal and total dataset. 

Methods 

DSC Acc AUC Se Sp 

normal  
total 

normal 
total 

normal 
total 

normal 
total 

normal 
total 

abnormal abnormal abnormal abnormal abnormal 

ERFNet 
0.8689 

0.8528 
0.9680  

0.9713 
0.9191 

0.9169 
0.8523 

0.8453 
0.9845 

0.9863 
0.8326 0.9795 0.9141 0.8366 0.9885 

SegNet 
0.8857 

0.8700  
0.9721 

0.9765 
0.9267 

0.9248 
0.8647 

0.8589 
0.9874 

0.9886 
0.8505 0.9820  0.9224 0.8517 0.9901 

U-Net 
0.8820  

0.8633 
0.9713 

0.9757 
0.9260 

0.9216 
0.8642 

0.8528 
0.9866 

0.9881 
0.8398 0.9811  0.9159 0.8385 0.9899 

Baseline 
0.8821 

0.8634 
0.9714 

0.9757 
0.9262 

0.9218 
0.8646 

0.8534 
0.9865 

0.9880 
0.8401 0.9811 0.9163 0.8369 0.9899 

Baseline+MSC  
0.8884 

0.8696 
0.9729 

0.9769 
0.9304 

0.9251 
0.8726 

0.8595 
0.9871 

0.9886 
0.8461 0.9819 0.9184 0.8433 0.9904 

Baseline+αLDice 
0.8916 

0.8754 
0.9737 

0.9779 
0.9300  

0.9254 
0.8703 

0.8587 
0.9883 

0.9899 
0.8553 0.9832 0.9196 0.8443 0.9918 

Baseline+MSC+αLDice 
0.8967 

0.8796 
0.9748 

0.9786 
0.9347 

0.9299 
0.8799 

0.8679 
0.9884 

0.9897 
0.8581 0.9834 0.9238 0.8531 0.9914 
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